If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2-14n-49=0
a = 7; b = -14; c = -49;
Δ = b2-4ac
Δ = -142-4·7·(-49)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-28\sqrt{2}}{2*7}=\frac{14-28\sqrt{2}}{14} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+28\sqrt{2}}{2*7}=\frac{14+28\sqrt{2}}{14} $
| x^2-14=-40 | | 8.4=-t/9.5 | | 4.7=8.7-0.5x | | 2+x+6x=23 | | -3{z-8}+10=-5 | | 3-5x+3x=-19 | | 5x+6(8)=2 | | 3p-p=4 | | 10=3x-5x-8 | | -60=-0.8k | | 6n-2=n=13 | | -2/3(x-9)=22 | | 2x+9+x=3-(x-2)+5 | | -2x+2+x=14 | | 5(3y-7=-5 | | 4(x+6)=64 | | 1+7x+5x=61 | | 45=-1/2(10x+30) | | 3x2+12x+13 =2x+5x= | | m9+23=73 | | 7(-4x-5)=21 | | 21.37=4g+3.81 | | 9(x+4)=9(x+4) | | -4x-3+2x=13 | | 20(6x+9)=10(12x+8) | | 0.11n+0.08(2550-n)=0.09(2550) | | 2x+6=1¿ | | 7x+7+4x=-92 | | x+1+x=-7 | | -16=3v+2 | | 2(-17)+5y=16 | | ½(29-r)=7.75 |